Error propagation of general linear methods for ordinary differential equations
نویسندگان
چکیده
منابع مشابه
Error propagation of general linear methods for ordinary differential equations
We discuss error propagation for general linear methods for ordinary differential equations up to terms of order p+2, where p is the order of the method. These results are then applied to the estimation of local discretization errors for methods of order p and for the adjacent order p + 1. The results of numerical experiments confirm the reliability of these estimates. This research has applica...
متن کاملGeneral linear methods for ordinary differential equations
Come with us to read a new book that is coming recently. Yeah, this is a new coming book that many people really want to read will you be one of them? Of course, you should be. It will not make you feel so hard to enjoy your life. Even some people think that reading is a hard to do, you must be sure that you can do it. Hard will be felt when you have no ideas about what kind of book to read. Or...
متن کاملError Estimation for Collocation Solution of Linear Ordinary Differential Equations
This paper is concerned with error estimates for the numerical solution of linear ordinary differential equations by global or piecewise polynomial collocation which are based on consideration of the differential operator involved and related matrices and on the residual. It is shown that a significant advantage may be obtained by considering the form of the residual rather than just its norm.
متن کاملAccumulation of Global Error in Lie Group Methods for Linear Ordinary Differential Equations
In this paper we will investigate how the local errors accumulate to the global error in Lie group methods for linear ODEs. The concept of the local and global errors has to be redefined to fit in the framework of Lie groups and algebras. Formulas for tracking the global error are proposed and demonstrated on numerical examples.
متن کاملImproved linear multi-step methods for stochastic ordinary differential equations
We consider linear multi-step methods for stochastic ordinary differential equations and study their convergence properties for problems with small noise or additive noise. We present schemes where the drift part is approximated by well-known methods for deterministic ordinary differential equations. Previously, we considered Maruyama-type schemes, where only the increments of the driving Wiene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Complexity
سال: 2007
ISSN: 0885-064X
DOI: 10.1016/j.jco.2007.01.009